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We studied the influence of the trigonal distortion of the regular octahedron along the �111� direction, as
found in the CoO2 layers. Under this distortion the t2g orbitals split into one a1g and two degenerate eg� orbitals.
We focused on the relative order of these orbitals. Using quantum chemical calculations of embedded clusters
at different levels of theory, we analyzed the influence of the different effects not taken into account in
crystalline field theory; that is, metal-ligand hybridization, the long-range crystalline field, screening effects,
and orbital relaxation. We found that none of them is responsible for the relative order of the t2g orbitals. In
fact, the trigonal distortion allows a mixing of the t2g and eg orbitals of the metallic atom. This hybridization
is at the origin of the a1g-eg� relative order and of the incorrect prediction of crystalline field theory.
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I. INTRODUCTION

Since the discovery of superconductivity in the hydrated
Na0.35CoO2·1.3H2O compound,1 and of the very large
thermopower2 in the Na0.7��CoO2 members of the same
family, the interest of the community in systems built from
CoO2 layers has exploded. The first step in the understanding
of the electronic properties of transition metal oxides, such
as the CoO2-based compounds, is the analysis of the crystal-
line field splitting of the d orbitals of the transition metal
atom. Indeed, depending on this splitting, the spin state of
the atom, the nature of the Fermi level orbitals, and thus the
Fermi level properties will differ.

The CoO2 layers are built from edge-sharing CoO6 octa-
hedra �see Fig. 1�. In these layers, the first coordination shell
of the metal atom differs from the regular octahedron by a
trigonal distortion along the threefold �111� axis �see Fig. 2�.
In all known materials �whether cobalt oxides or other metal
oxides such as LiVO2, NaTiO2, NaCrO2, etc.�, this distortion
is in fact a compression. The local symmetry group of the
metal atom is lowered from Oh to D3d. The T2g irreducible
representation of the Oh group is thus split into one Eg and
one A1g representation. The relative energy of the resulting eg�
and a1g orbitals �see Fig. 2� has been a subject of controversy
in the recent literature, as far as the low-spin Co4+ ion is
concerned. At this point let us point out the crucial impor-
tance of the knowledge of this energetic order for the under-
standing of the low-energy properties of the CoO2 layers.
Indeed, the possible existence of orbital order, as well as the
minimal model pertinent for the description of these systems,
depend on this order.

Authors such as Kashibae and Maekawa,3 following crys-
talline field theory, support the idea that the a1g orbital is of
lower energy than the two degenerate eg� orbitals, leading to
an orbital degeneracy for the Co4+ ion. On the contrary, ab
initio quantum chemical calculations for strongly correlated
systems6 yield an a1g orbital of higher energy than the eg�
orbitals, and a nondegenerate Fermi level of the Co4+ ion. As
far as density functional methods are concerned, some
authors4 find the a1g orbital of higher energy than the eg�,
while others5 find the reverse order �see Fig. 2�.

Angle-resolved photoemission spectroscopy �ARPES� ex-
periments were performed on several CoO2 compounds.7

This technique probes the Fermi surface, and clearly shows
that the Fermi surface of the CoO2 layers issues from the a1g
orbitals, and not at all from the eg� orbitals �orbitals of Eg
symmetry, coming from the former t2g orbitals�, supporting
the ab initio results.

In the present work, we will try to understand the reasons
why the crystalline field model is unable to find the correct
energetic order of t2g orbitals in such trigonal distortions.
Several hypotheses can be made to explain the orbital order:

FIG. 1. �Color online� Schematic representation of the CoO2
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FIG. 2. �Color online� Schematic representation of cobalt 3d
splitting. � represents the angle between the z axis—the threefold
�111� axis of the CoO6 octahedron—and the Co-O direction. �0

=arccos�1 /�3��54.74° is the � angle for the regular octahedron.
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the delocalization of the metal 3d orbitals toward the ligands,
the fact that the electrostatic potential of the whole crystal
differs from the one assumed in the crystalline field model,
correlation effects within the 3d shell, screening effects, etc.
All these hypotheses will be specifically tested on the Co4+

�3d5� ion that is subject in this work to a more thorough
study than other metal d-orbital fillings. Nevertheless, other
metal fillings �3d1–3d3, which can be found in vanadium,
titanium, and chromium oxides� will also be studied. We will
see the crucial importance of the band filling on the t2g or-
bital order. In this work we will focus only on the Oh to D3d
trigonal distortion, the subject of the controversy.

The next section will present the method used in this
work, Secs. III and IV will report the calculations and ana-
lyze them, and finally the last section will be devoted to the
conclusions.

II. COMPUTATIONAL METHOD AND DETAILS

The energy of the atomic 3d orbitals is an essentially local
value, as supposed in the crystalline field model. However,
its analysis exhibits some nonlocal contributions. Indeed, or-
bitals energies can be seen as resulting from the following
terms: the electrostatic potential due to the first coordination
shell—in the present case, the six oxygen atoms of the
octahedron, further referred as nearest-neighbor oxygens
�NNOs�; the electrostatic potential due to the rest of the crys-
tal; the kinetic energy, which includes the hybridization of
the metal orbitals with nearest-neighbor ligands; the Cou-
lomb and exchange contributions within the 3d shell; the
radial relaxation of the 3d orbitals; and finally the virtual
excitations from the other orbitals that are responsible for the
screening effects. All these contributions, except for the elec-
trostatic potential due to the rest of the crystal �nuclear at-
tractions and Coulomb interactions�, are essentially local
contributions8 and known to decrease very rapidly with in-
creasing distance from the metal atom. In fact, they are
mostly restricted to the first coordination shell of cobalt. In
contrast, the Madelung potential retains the nonlocal contri-
butions resulting from the nuclear attraction and the Cou-
lomb electron-electron repulsion. It is known to be very
slowly convergent with the distance. We thus made calcula-
tions at different levels, including first all the above effects,
and then excluding them one at the time, in order to end up
with only the effects included in the crystalline field model.

The calculations will thus be done on CoO6 or Co frag-
ments. Different embeddings and different levels of calcula-
tion will be used. The Co-O distance will be fixed to the
value of the superconducing compound, i.e., RCo-O
=1.855 Å. The angle � between the Co-O direction and the z
axis �see Fig. 2 above� will be varied from 0 to 90°.

The calculations will be done at the level of the complete
active space self-consistent field+difference dedicated con-
figuration interaction9,10 �CASSCF+DDCI; see Sec. II A� for
the most involved case, using the core pseudopotential and
basis set of Barandiaran et al.11 The fragment used will in-
clude all the first coordination oxygens in addition to the
cobalt atom. The embedding will be designed so as to prop-
erly represent the full Madelung potential of the supercon-

ducting material, and the exclusion effects of the rest of the
crystal on the computed fragment electrons �see Ref. 6 for
further details�. For the simplest case a minimal basis set
derived from the preceding one will be used, and only the
cobalt atom will be included in the computed fragment. The
effect of the crystalline field will be described by −2 point
charges located at the positions of the first coordination shell
oxygens. The calculations will be done at the CASSCF level
only. Between these two extreme cases, several intermediate
ones will be considered, in order to check the previously
enumerated points.

The electrostatic potential due to the cobalt first oxygen
neighbors, as well as the unscreened Coulomb and exchange
contributions within the 3d shell, are included in all calcula-
tions. The electrostatic potential is treated either through the
inclusion of the NNOs in the computed fragment or through
−2 point charges. The Coulomb and exchange contributions
are treated through the CASSCF calculation. The electro-
static contribution of the rest of the crystal is included only
in the most involved calculations, using an appropriate em-
bedding of point charges and a total ions pseudopotential.12

The hybridization of the metal 3d orbitals is treated by in-
cluding explicitly the NNOs in the considered fragment
�CoO6�. The radial relaxation of the 3d orbitals is treated
when extended basis sets are used. When a minimal basis set
is used, the radial part of the orbitals is frozen as in the
high-spin state of the isolated Co4+ ion. Finally, the screening
effects are treated only when the calculation is performed at
the CASSCF+DDCI level.

A. The CASSCF and DDCI methods

Let us now describe briefly the CASSCF and DDCI ab
initio methods. These methods are configuration interaction
�CI� methods, that is, exact diagonalization methods within a
selected set of Slater determinants. These methods were spe-
cifically designed to treat strongly correlated systems, for
which there is no qualitative single-determinant description.
The CASSCF method treats exactly all correlation and ex-
change effects within a selected set of orbitals �here the 3d
shell of the cobalt atom�. The DDCI method treats in addi-
tion the excitations responsible for the screening effects on
the exchange, repulsion, hopping, etc. integrals. These meth-
ods are based on the partitioning of the fragment orbitals into
three sets: the occupied orbitals, which are always doubly
occupied in all determinants of the complete active space
�CAS� �here the cobalt inner electrons and the NNO ones�,
the active orbitals, which can have all possible occupations
and spins in the CAS �here the cobalt 3d orbitals�, and the
virtual orbitals, which are always empty in the CAS.

The CASCI method is the exact diagonalization within
the above-defined complete active space. The CASSCF
method optimizes in addition the fragment orbitals in order
to minimize the CASCI wave function energy. This is a
mean-field method for the occupied orbitals but all the cor-
relation effects within the active orbitals are taken into ac-
count. Finally the DDCI method uses a diagonalization space
that includes the CAS and all single and double excitations
on all determinants of the CAS, except the ones that excite
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two occupied orbitals into two virtual orbitals. Indeed, such
excitations can be shown not to contribute—at the second
order of perturbation—to the energy differences between
states that differ essentially in their CAS wave function.
Therefore, they have little importance for the present work.
The DDCI method thus accurately treats both the correlation
within the CAS and the screening effects.

Compared to the very popular density functional theory
�DFT� methods, the CAS+DDCI method presents the advan-
tage of treating exactly the correlation effects within the 3d
shell. This is an important point for strongly correlated ma-
terials such as the present ones. Indeed, even if the DFT
methods are supposed to be exact provided knowledge of the
correct exchange-correlation functional, the present function-
als work very well for weakly correlated systems, but en-
counter more difficulties with strong correlation effects. For
instance the local density approximation �LDA� finds most
of the sodium cobaltite compounds ferromagnetic, in contra-
diction with experimental results. LDA+U functionals try to
correct these problems by using an ad hoc on-site repulsion
U within the strongly correlated shells. This correction yields
better results; however, it treats the effect of the repulsion
within a mean-field approximation, still lacking a proper
treatment of the strong correlation. The drawbacks of the
CAS+DDCI method compared to the DFT methods are its
cost in terms of CPU time and the necessity to work on
formally finite and relatively small systems. In the present
case, however, this drawback appears to be an advantage
since it decouples the local quantities under consideration
from the dispersion problem.

III. RESULTS AND ANALYSIS

Let us first attract the attention of the reader to what is
supposed to be the energy difference between the eg� and a1g
orbitals of the Co4+ ion in an effective model. In fact, the
pertinent parameters for an effective model should be such
that one can reproduce by their means the exact energies or,
in the present case, the ab initio calculation of the different
Co4+ atomic states. It turns out, that within a Hubbard-type
model the pertinent effective orbital energies should obey the
following set of equations:

E��a1g�� = 4��eg�� + ��a1g� + 2U + 8U� − 4JH,

E��eg��� = 3��eg�� + 2��a1g� + 2U + 8U� − 4JH,

�E = E��eg��� − E��a1g�� = ��a1g� − ��eg��

where the schematic picture of the �eg�� and �a1g� states is
given in Fig. 3, ��eg�� and ��a1g� are the effective orbital
energies of the eg� and a1g atomic orbitals, U is the effective
electron-electron repulsion of two electrons in the same co-
balt 3d orbital, U� the effective repulsion of two electrons in
different cobalt 3d orbitals, and JH the atomic Hund’s ex-
change effective integrals within the cobalt 3d shell.

A. The reference calculation

The reference calculation includes all effects detailed in
the preceding section. For the superconducting compound

the effective t2g splitting was reported in Ref. 6 to be

�E = ��a1g� − ��eg�� = 315 meV.

This point corresponds to ��61.5° �which is a value of �
larger than that of the regular octahedron �0�54.74°� where
the crystalline field theory predicts a reverse order between
the t2g orbitals.

B. Screening effects

The effect of the screening on the t2g orbital splitting can
be evaluated by doing a simple CASCI calculation using the
same fragment, embedding, basis set, and orbitals as the pre-
ceding calculation. Without the screening effects, one finds a
t2g splitting of

�E = ��a1g� − ��eg�� = 428 meV.

Obviously the screening effects cannot be taken as respon-
sible for the qualitative energetic order between the a1g and
eg� orbitals.

C. Cobalt 3d–oxygen hybridization

The effect of the hybridization of the cobalt 3d orbitals
with the neighboring oxygen ligands can be evaluated by
taking out the oxygen atoms from the quantum cluster, and
treating them as simple −2 point charges at the atomic loca-
tions. The other parameters of the calculation are kept as in
the preceding case. The new orbitals are optimized at the
average CASSCF level between the two �eg�� and the �a1g�
states. It results in a t2g splitting of

�E = ��a1g� − ��eg�� = 40 meV

for the superconducting compound. Again the hybridization
of the cobalt 3d orbitals with the neighboring oxygens can-
not be taken as responsible for the inversion of the splitting
between the a1g and eg� orbitals.

D. Long-range electrostatic potential

The effect of the long-range electrostatic potential can be
evaluated by restricting the embedding to the NNO point
charges only, that is, to the electrostatic potential considered
in the crystalline field method. One finds a t2g splitting of

�E = ��a1g� − ��eg�� = 124 meV.

Once again, the result is positive and thus the long-range
electrostatic potential is not the cause of the crystalline field
inversion of the t2g splitting.

|e�g�|a1g�

e�g1 e�g2a1g

eg1 eg2

e�g1 e�g2a1g

FIG. 3. �Color online� Schematic representation of the Co4+

states of interest. Let us point out that �eg�� is doubly degenerate, the
hole being located either on the eg1� or on the eg2� orbitals.
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E. Orbital radial relaxation

At this point only a few effects on top of the crystalline
field theory are still treated in the calculation. One of them is
the radial polarization effect of the 3d orbitals, which allows
their adaptation to the different occupations in the specific
�a1g� and �eg�� states. This polarization is due to the use of an
extended basis set. We thus reduce the basis set to a minimal
basis set �only one orbital degree of freedom per �n , l� occu-
pied or partially occupied atomic shell�. The minimal basis
set was obtained by the contraction of the extended one, the
radial part of the orbitals being frozen as that of the isolated
Co4+ high-spin state. This choice was done in order to keep a
basis set as close as possible to the extended one, and be-
cause only for the high spin state of the isolated atom are all
3d orbitals equivalent, and thus have the same radial part.
One obtains in this minimal basis set a t2g splitting of

�E = ��a1g� − ��eg�� = 41 meV.

At this point we computed the effective orbital energies in
only the crystalline field conditions; however, the result is
still reversed from what is usually admitted within this ap-
proximation. Indeed, the Co4+ ion was computed in the sole
electrostatic field of the NNOs, treated as −2 point charges;
and the calculation is done within a minimal basis set and at
the average CASSCF level.

F. Further analysis

In order to understand this puzzling result, we plotted the
whole curve �E��� �see Fig. 4� at this level of calculation
and analyzed separately all energetic terms involved in this
effective orbital energy difference.

One sees on Fig. 4 that the �E��� curve is not monotonic,
as expected from the crystalline field theory. Indeed, while

for �=0 the relative order between the a1g and eg� orbitals is
in agreement with the crystalline field predictions, for �
=90° the order is reversed. One should also notice that, in
addition to the �0 value of the regular octahedron, there is
another value of � for which the three t2g orbitals are degen-
erate. In the physically realistic region of the trigonal distor-
tion �around the regular octahedron �0 value�, the relative
order between the a1g and eg� orbitals is reversed compared to
the crystalline field predictions.

Let us now decompose �E��� into its two-electron part
within the 3d shell, �E2���, and the rest, referred to as the 3d
single-electron part, �E1���. �E1 includes the kinetic energy,
the electron-nucleus and electron-charge interactions, and the
interaction of the 3d electrons with the inner shell electrons.

One thus has

�E = �E1 + �E2 = ��a1g� − ��eg1� � = ��a1g� − ��eg2� �

with

�E1 = 	a1g
−
�2

2

a1g� − 	eg�
−

�2

2

eg�� �1�

+	a1g
�
N

− ZN

RN

a1g� −	eg�
�

N

− ZN

RN

eg��

�2�

+ �
� occ

2	a1g�
 1

r12

a1g��

− 	a1g�
 1

r12

�a1g� − �

� occ
2	eg��
 1

r12

eg���

− 	eg��
 1

r12

�eg�� �3�

and

�E2 = 	a1ga1g
 1

r12

a1ga1g� − 	eg�eg�
 1

r12

eg�eg��

+ 2	a1geg�
 1

r12

a1geg�� − 	a1geg�
 1

r12

eg�a1g�

− 2	eg1� eg2� 
 1

r12

eg1� eg2� � + 	eg1� eg2� 
 1

r12

eg2� eg1� � ,

�4�

where the equations are given in atomic units. ZN refers to
the nuclear charge of the cobalt atom and the −2 point
charges located at the NNO positions. RN is the associated
electron-charge distance. The sum on � runs over all the
orbitals of the cobalt inner shells.

Let us now examine the dependence on � of each of the
terms of �E1 and �E2.

Kinetic energy. The radial part of each of the 3d orbitals
being identical due the the minimal basis set restriction, the
kinetic part is identical for all 3d orbitals and thus its contri-
bution to �E1 �terms labeled 1 of �E1� vanishes.

Nuclear interaction. Obviously this contribution to �E1
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θ (deg)

∆E
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ε(
a 1g

)
-

ε(
e g’)

2-elec. part
1-elec. part
ε(a

1g
) - ε(e

g
’)

t2g orbital splitting
3d

5
system

FIG. 4. �Color online� Orbital splitting between the a1g and eg�
orbitals when only the nearest-neighbor ligand electrostatic field is
included. The dotted red curve corresponds to the single-electron
part of the orbital energy difference �E1, that is, the kinetic energy
�Eq. �1��, the electron-charge interaction �Eq. �2��, and the interac-
tion with the core electrons �Eq. �3��. The dashed green curve cor-
responds to the two-electron part of the orbital energy difference
�E2, that is, the repulsion and exchange terms within the 3d shell
�Eq. �4��. The solid vertical line indicates the regular octahedron �
value and the dashed vertical line the � value for the superconduct-
ing compound.

SYLVAIN LANDRON AND MARIE-BERNADETTE LEPETIT PHYSICAL REVIEW B 77, 125106 �2008�

125106-4



�terms labeled 2 of �E1� strongly depends on � through the
position of the −2 charges.

Interaction with the inner-shell electrons. This term
�terms labeled 3 of �E1� depends only on the shape of the t2g
and inner-shell orbitals. However, the minimal basis set does
not leave any degree of freedom for the relaxation of the
inner-shell orbital whose shapes are thus independent of �.
Similarly, the 3d radial part of the 3d orbitals is totally fro-
zen.

�E2. Finally, the dependence of �E2 can only go through
the shape of the a1g and eg� orbitals, whose radial part is
totally frozen due to the use of a minimal basis set.

If one accepts that the a1g and eg� orbitals come from the
t2g orbitals of the regular octahedron, their angular form is
totally given by the symmetry �see Eqs. �5� and �6�� and both
�E2 and the third contribution to �E1 should be independent
of �:

egeg1
0 =

1
�3

dxy +
�2
�3

dxz,

eg2
0 =

1
�3

dx2−y2 +
�2
�3

dyz,� �5�

t2g
a1g

0 = dz2,

eg1
0� =

�2
�3

dxy −
1
�3

dxz,

eg2
0� =

�2
�3

dx2−y2 −
1
�3

dyz,
� �6�

where the x, y, and z coordinates are respectively associated
with the a, b, and c crystallographic axes.

Figure 4 displays both �E1 �dotted red curve� and �E2
�dashed green curve� contributions to �E. One sees immedi-
ately that �E2 is not at all independent of � but rather mono-
tonically increasing with �. Thus the above hypothesis of the
t2g exclusive origin for the eg� orbitals is not valid. Indeed,
beyond the �=�0 point, the only orbital perfectly defined by
the symmetry is the a1g orbital. The eg� and eg orbitals belong
to the same irreducible representation �Eg� and can thus mix
despite the large t2g-eg energy difference. If we name this
mixing angle �, we have

egi� = egi
0� cos � + egi

0 sin � ,

egi = − egi
0� sin � + egi

0 cos � .

Figure 5 displays � as a function of �. One sees that the
t2g-eg hybridization angle � is non-null—except for the regu-
lar octahedron—and a monotonically increasing function of
�. Even if very small ��0.6° �, this t2g-eg hybridization has
an important energetic effect, since it lowers the eg� orbital
energy while increasing the eg one. � is very small but it
modulates large energetic factors in �E2: the on-site Cou-
lomb repulsions of two electrons in the 3d orbitals. The re-
sult is a monotonically increasing variation of �E2 as a func-
tion of �. The variation of the �E1 term is dominated by its
nuclear interaction part and exhibits a monotonically de-

creasing variation as a function of �, as expected from the
crystalline field theory. The nuclear interaction and t2g-eg hy-
bridization thus have opposite effects on the a1g-eg� splitting.
The failure of the crystalline field theory thus comes from
not considering the t2g-eg hybridization.

In the calculations presented in Figs. 4 and 5, the screen-
ing effects on the on-site Coulomb repulsion and exchange
integrals were not taken into account. Thus, the absolute
value of �E2 as a function of the hybridization � is very
large and � is very small. When the screening effects are
properly taken into account, the absolute value of �E2 as a
function of � is reduced by a factor of about 6, and the t2g-eg
hybridization is much larger than the values presented in Fig.
5. Indeed, in the superconducting compound, for a realistic
calculation including all effects, one finds ��13° ��
=61.5° �.

At this point we would like to compare the a1g-eg� splitting
found in the present calculations and the one found using
DFT methods. Indeed, our splitting �315 meV for the super-
conducting compound� is larger than the DFT evaluations
�always smaller than 150 meV�. This point can be easily un-
derstood using the single-electron and two-electron partial
analyses presented above. Indeed, while the single-electron
part is perfectly treated in DFT calculations, the two-electron
part is treated within the exchange-correlation kernel. How-
ever, these kernels are well known to fail to properly repro-
duce the strong correlation effects present in the transition
metal open 3d shells. One thus expects that, while the single-
electron part of the atomic orbital energies is well treated, the
two-electron part is underestimated, resulting in an under-
evaluation of the a1g-eg� splitting, as can be clearly seen from
Fig. 4. LDA+U and DMFT methods try to correct this point
by introducing the on-site repulsion U. However, as can be
seen in Eq. �4� the �E2 term, responsible for the correct
a1g-eg� splitting, is zero unless proper Racah’s parameters are
used, which is not the case in most calculations.

IV. OTHER CASES

We considered up to now a Co4+ ion, that is, five electrons
in the 3d shell, and a fixed metal-ligand distance, RM-O. Let
us now examine the effect of the distance RM-O and the band
filling on the a1g-eg� splitting. The calculations presented in
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FIG. 5. t2g-eg hybridization angle under trigonal distortion.
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this section follow the same procedure as in Secs. III E and
III F. For different fillings a typical example in the transition
metal oxide family was used to define the type of metallic
atom and metal oxygen distances. The minimal basis set
coming from full contraction of the basis set given in Ref. 11
will be used.

A. The effect of the Co-O distance

Figure 6 displays the a1g-eg� energy splitting as a function
of the distortion angle � and for different distances. The
range of variation, from 1.8 to 1.95 Å, includes all physi-
cally observed distances in CoO2 layers.

One sees immediately that, despite the large variation of
the metal-ligand distance, the relative order of the a1g and eg�
orbitals remains identical. The main effect of RM-O is thus to
renormalize the amplitude of the splitting, lowering the split-
ting for larger distances and increasing it for smaller ones.

B. 3d1

The simplest filling case corresponds to only one electron
in the 3d shell. This is, for instance, the case of the NaTiO2
compound. The calculations were done using the average
Ti-O distance found in NaTiO2,13 RTi-O=2.0749 Å.

In this case, �E2=0 and �E���=�E1��� behaves as pic-
tured in Fig. 4. The a1g orbital is of lower energy than the eg�
for �	�0 and of higher energy for �
�0. This result is in
perfect agreement with crystalline field theory.

C. 3d2

A simple example of 3d2 filling in transition metal oxides
is the LiVO2 compound. Indeed, the vanadium atom is in the
V3+ ionization state. We thus used a metal-oxygen distance
of RV-O=1.9787 Å.14 Figure 7 displays the a1g-eg� splitting as

well as its decomposition into the single-electron and two-
electron parts.

As in the 3d5 case �Fig. 4�, the single-electron and two-
electron parts behave in a monotonic way as a function of �,
and in an opposite manner. In the present case, however, the
two-electron part always dominates over the one-electron
part, and the a1g-eg� orbital splitting is always reversed com-
pared to the crystalline field predictions. As for the 3d5 sys-
tem, there is a slight eg�-eg hybridization that is responsible
for the t2g orbital order.
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FIG. 6. �Color online� Orbital splitting between the a1g and eg�
orbitals for a 3d5 transition metal and for different metal-ligand
distances. Only the nearest-neighbor ligand electrostatic field is in-
cluded in the calculation. The dotted red curve corresponds to
RCo-O=1.8 Å, the solid black curve corresponds to the supercon-
ducting compound �RCo-O=1.855 Å�, the dashed magenta curve
corresponds to RCo-O=1.9 Å, and finally the dot-dashed blue curve
corresponds to RCo-O=1.95 Å.
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FIG. 7. �Color online� Orbital splitting between the a1g and eg�
orbitals for a 3d2 transition metal. Only the nearest-neighbor ligand
electrostatic field is included in the calculation. The dotted red
curve corresponds to the single-electron part of the orbital energy
difference, �E1, that is, the kinetic energy �Eq. �1��, the electron-
charge interaction �Eq. �2��, and the interaction with the core elec-
trons �Eq. �3��. The dashed green curve corresponds to the two-
electron part of the orbital energy difference, �E2, that is, the
repulsion and exchange terms within the 3d shell �Eq. �4��.
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FIG. 8. �Color online� Orbital splitting between the a1g and eg�
orbitals for a 3d3 transition metal. Only the nearest-neighbor ligand
electrostatic field is included in the calculation. The dotted red
curve corresponds to the single-electron part of the orbital energy
difference, �E1, that is, the kinetic energy �Eq. �1��, the electron-
charge interaction �Eq. �2��, and the interaction with the core elec-
trons �Eq. �3��. The dashed green curve corresponds to the two-
electron part of the orbital energy difference, �E2, that is, the
repulsion and exchange terms within the 3d shell �Eq. �4��.
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D. 3d3

Examples of 3d3 transition metal oxides are found easily
in the chromium compounds. Let us take for instance the
NaCrO2 system.15 The metal oxygen distance is thus RCr-O
�1.901 Å. Figure 8 displays the a1g-eg� orbital splitting as
well as its decomposition into single- and two-electron parts.

As usual the single-electron part and the two-electron part
are monotonic as functions of � but with slopes of opposite
signs. This case is quite similar to the 3d5 case since neither
of the single- and two-electron parts dominates the t2g orbital
splitting over the whole range. Indeed, for small values of �,
the crystalline field effect dominates and the a1g orbital is
above the eg� ones while, for large values of �, the two-
electron part dominates and the a1g orbital is again above the
eg� ones. In a small intermediate region the order is reversed.
In the realistic range of � ����0� there is a strong competi-
tion between the two effects �quasidegeneracy of the a1g and
eg� orbitals� and no simple theoretical prediction can be made.
The crystalline field theory is not predictive but the present
calculations cannot be considered as predictive either, since
all the neglected effects may reverse the a1g-eg� order.

V. DISCUSSION AND CONCLUSION

In the present work we studied the validity of the crystal-
line field theory under the application of a trigonal distortion
on the regular octahedron. Under such a distortion, the T2g
irreducible representation �irrep� of the Oh group spits into
A1g and Eg irreps �T2g→A1g � Eg�, while the eg irrep remains
untouched �Eg→Eg�. The hybridization between the t2g and
eg orbitals thus becomes symmetry allowed, even if hindered
by energetic factors. This hybridization is not taken into ac-
count in the crystalline field theory. It is, however, of crucial
importance for the relative order between the former t2g or-
bitals and the reason for the failure of the crystalline field
theory to be predictive. Indeed, due to the t2g-eg orbital hy-
bridization, the two-electron part of the eg� orbital energy
becomes dependent on the amplitude of the distortion and of
opposite effect to that of the single-electron part. The relative
order of the t2g orbitals thus depends on the competition
between these two effects and as a consequence of the band
filling.

In this work we studied the Oh to D3d distortion; however,
one can expect similar effects to take place for other distor-
tions of the regular octahedron. The condition for these ef-

fects to take place is that the T2g irreducible representation
splits into a one-dimensional irrep �A� and the same two-
dimensional irrep �E� as the one the eg orbitals are trans-
formed to:

T2g → A � E ,

Eg → E .

Indeed, under such a distortion, t2g-eg hybridization phenom-
ena are allowed. The distortion should thus transform Oh into
subgroups that keep the C3 �111� symmetry axis: C3, C3v, D3,
S6, and D3d. Examples of such deformations are the elonga-
tion of the metal-ligand distance of one of the sets of three
symmetry-related ligands, or the rotation of such a set of
three ligands around the �111� symmetry axis. For instance,
one expects that t2g-eg hybridization will also take place in
trigonal prismatic coordination.

However, in real systems like the sodium cobaltites, these
distortion do not usually appear alone but rather coupled. For
instance, in the squeezing of the metal layer between the two
oxygen layers observed as a function of the sodium content
in NaxCoO2, the Co-O bond length and the threefold trigonal
distortion are coupled. Since this composed distortion be-
longs to the above-cited class, t2g-eg hybridization will take
place and the relative orbital order between the a1g and eg�
orbitals will be qualitatively the same as in Fig. 4. The bond
length modification at equal distortion angle � will change
only the quantitative value of the orbital splitting, but not its
sign. Bond elongation reduces the splitting and bond com-
pression increases it. One can thus expect in sodium cobal-
tites that the a1g-eg� orbital energy splitting will decrease with
increasing sodium content. The reader should, however, keep
in mind that the effects of this splitting reduction will remain
relatively small compared to the bandwidth, as clearly seen
in Ref. 16. In fact, one can expect that a large effect will be
the modification of the band dispersion due not only to the
bond length modification, but also to the t2g-eg hybridization.
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